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Stochastic partial differential equations can be used to model second-order thermodynamical phase transi-
tions, as well as a number of critical out-of-equilibrium phenomena. In �2+1� dimensions, many of these
systems are conjectured �and some are indeed proved� to be described by conformal field theories. We advance,
in the framework of the Martin-Siggia-Rose field-theoretical formalism of stochastic dynamics, a general
solution of the translation Ward identities, which yields a putative conformal energy-momentum tensor. Even
though the computation of energy-momentum correlators is obstructed, in principle, by dimensional reduction
issues, these are bypassed by the addition of replicated fields to the original �2+1�-dimensional model. The
method is illustrated with an application to the Kardar-Parisi-Zhang �KPZ� model of surface growth. The
consistency of the approach is checked by means of a straightforward perturbative analysis of the KPZ
ultraviolet region, leading, as expected, to its c=1 conformal fixed point.
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Recent developments in two-dimensional criticality have
extended the application of conformal field theory �CFT�
methods �1,2� to contexts far beyond the usual realm of
second-order phase transitions. Navier-Stokes turbulence
�3,4�, random deposition models �5–9�, spin glasses �10,11�,
and even chaotic quantum wave functions �12,13� provide
actual examples where conformality has been convincingly
established. The theory of stochastic Lowner equations
�SLEs� �14–16� has been a major tool in the study of these
problems �17�. The essential strategy, which has strong geo-
metrical appeal, is to identify level curves of order param-
eters or dynamical fields to the conformally invariant random
paths described by SLEs. Nevertheless the clear success of
numerical results, it is important to stress that they have been
obtained in a frankly heuristic way, so that further elabora-
tions are still in order.

The understanding of critical two-dimensional out-of-
equilibrium systems under the light of conformal methods is
still in its initial stages. The hope, supported by the above
mentioned examples, is that conformal invariance will play a
crucial role �as it does in thermodynamics� in extending the
very concept of universality classes to the broad set of self-
organized critical models �two-dimensional turbulence, for
instance, turns out to be in the universality class of critical
percolation �3��.

We put forward in this work an alternative, and essentially
analytical, approach to the problem of conformal invariance
in �2+1�-dimensional dynamical systems. As an interesting
testing ground, we apply the method to the Kardar-Parisi-
Zhang �KPZ� model of kinetic roughening �6,18�, a proto-
type of great interest in out-of-equilibrium statistical me-
chanics, due to its numerous connections to subjects like
directed polymers in random media, Burgers hydrodynamics,
flame fronts, domain wall dynamics, etc �19�.

Let �=��x� , t� be a general scalar field defined in
�2+1�-dimensional space-time. Assume that correlation
functions of � can be computed with the help of a path-
integral measure D� exp�−S����, not necessarily real. We
are interested to know if spatial fluctuations of � at a given
time instant, say t=0, have an underlying CFT description.

Taking �s�x�����x� ,0�, we introduce the reduced action

S̄��s�—the “�s model” �to be contrasted to the original
�2+1�-dimensional “�-model”�—which, up to normalization
factors, is obtained from

exp�− S̄��s�� � �
�

D� exp�− S���� , �1�

where the symbol �� stands for path-integration subject to
the boundary condition ��x� ,0�=�s�x��.

One may wonder if it is possible to define an energy-
momentum tensor for the two-dimensional �s model, as a
way of probing its conformal structure from the computation
of short-distance expansions �1�. Since it is in general not

known how to evaluate S̄��s�, it would seem hopeless to
concentrate any effort on the computation of the correspond-
ing energy-momentum tensor. However, as we show below,
the energy-momentum route to conformality is still viable in
a pragmatical sense. Following Noether’s theorem, let Tij

�,
with i , j=1,2, be the second-order tensor related to the shift
of the action S��� induced by time-independent infinitesimal
translations � j�x�� �20�,

S��� → S��� −
1

2�
� dx1dx2�i� jTij

�. �2�

As Tij
� does not depend on the time variable, we call it the

“projected energy-momentum tensor.” It is not difficult to
show that

Tij
s �x�� � exp�S̄��s���

�

D� exp�− S����Tij
��x�� �3�

does indeed solve the translation Ward identities of the �s

model, viz.,
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�� jTij
s �x���s�x�1��s�x�2� . . . �s�x�N�	�s

= 2�

p=1

N

�2�x� − x�p��i
�p���s�x�1��s�x�2� . . . �s�x�N�	�s. �4�

We will, thus, pursue the idea that Eq. �3� can be used to
define the renormalized energy-momentum tensor associated
to the �s model �21�. It is not possible to compute Tij

s in
general, since it depends, according to Eqs. �1� and �3�, on
exact path-integrations. Observe, however, that Eq. �3� leads
to

� D�s exp�− 2S̄��s��Tij
s �x1,x2�Tlm

s �x1�,x2��

=� D�1D�2���1
s − �2

s�exp�− S��1� − S��2��

� Tij
�1�x1,x2�Tlm

�2�x1�,x2�� . �5�

The fields �1 and �2 in Eq. �5� are replicas of �, which are
path-integrated under the constraint �1�x� ,0�=�2�x� ,0�. Equa-
tion �5� would be exactly what one needs for the computa-
tion of the energy-momentum correlator, if the exponential

factor in its LHS were given by exp�−S̄��s��.
It is clear that the critical surface is modified due to the

replacement of exp�−S̄��s�� by exp�−2S̄��s�� in the path-
integration measure. However, since the dimensionality,
symmetries and the form of interactions are strictly the same
in both of these models, it is likely that the critical surface
can be restored to its original shape through coupling con-
stant redefinitions. In the case of self-organized critical dy-
namics �as in the KPZ model� it is natural to conjecture
stability of the critical behavior against such critical surface
deformations.

As far as we are interested in criticality, Eq. �5� is worth
of attention due to the computability of its RHS, which
avoids the use of the exact dimensionally reduced action

S̄��s�. Taking w=x1+ ix2 and T��T11−T22+2iT12, the holo-
morphic component of the projected energy-momentum ten-
sor derived in the �-model, conformality of the �s model
will be indicated by

�T�1
�w�T�2

�w��	 =
c

8

1

�w − w��4 , �6�

where c is the central charge �1� and the above expectation
value is computed from the path integration over fields �1
and �2 in Eq. �5�. The 1/8 factor in Eq. �6� is due to the fact
that the energy-momentum tensor associated to the model

with action 2S̄��s� is 2Tij
s .

In order to understand how the method works in practice,
we focus our attention, now, on its application to a specific
problem: the �2+1�-dimensional KPZ model,

�th = ��2h +
�

2
���h�2 + �2D	 , �7�

which describes the evolution of the height h of randomly
deposited atoms on a planar substrate. The system is charac-

terized by the surface tension �, the nonlinear parameter � of
lateral growth, and the strength of random deposition D. The
Gaussian random field 	 is taken to have zero mean and
two-point correlation function �	�x� , t�	�x�� , t�	=�2�x� −x�����t
− t��.

The Cole-Hopf transformation,

� = exp��h/2�� , �8�

maps Eq. �7� into

�t� = �2� + �2g	� , �9�

where g=2�2D /�3. We can write down, using the response
functional formalism �20,22,23�, the generating functional of
correlation functions for the replicas �1 and �2 of model �9�,

Z��jp, ĵp� =� D
D�̂pD�p

� exp�− S + i� dtd2x��jp�p + ĵp�̂p�� ,

�10�

where S=S�+S
 with

S� =� d2x�dt�i�̂p��t�p − �2�p� + g�̂p
2�p

2� , �11�

S
 = i� d2x�
�x����2�x�,0� − �1�x�,0�� . �12�

Above, 
�x�� is the Lagrange multiplier field which ensures,
as in Eq. �5�, the constraint �1�x� ,0�=�2�x� ,0�. The system is
confined, in principle, to a box of dimensions L�L, and time
integration is restricted to the finite interval −�� t�0, with
eventually L ,�→ �the order of taking limits can be impor-
tant here�.

Assuming that h=0 at initial time �t=−��, the KPZ de-
scription is effectively a perturbation of the Edwards-
Wilkinson �EW� linear model at small spacetime scales,

where the surface height fluctuates around h̄=0 �24�. We can
perform, accordingly, the substitution �→1+� in the action
S�, to get

�t� = �2� + �g	 + �g	� . �13�

Perturbative renormalization group flows computed from ei-
ther the stochastic Eq. �7� and �13� agree perfectly well
�18,19,25–27�, and show that g=0 is an ultraviolet fixed
point in d=2. Any finite g flows in the infrared to the �still
barely understood� KPZ strong coupling regime �27�.

As usual, the generating functional can be split into qua-
dratic and interacting parts. Considering the small scale
model �13�, exact integrations over �̂ and � yield the non-
perturbed functional
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Z0��Jq
p� =� D
 exp� i

4
� dtd2x�� dt�d2x��

� Jq
p�x�,t�Jr

p�x��,t��Aqr�x�,x��,t,t��� , �14�

where Jq
p�x� , t� is the qth component of the doublet

Jp�x�,t� = � ĵp�x�,t�
jp�x�,t� − �− 1�p
�x����t�

� �15�

and Aqr�x� ,x�� , t , t�� denotes the matrix elements of the opera-
tor

A =
2

�t
2 − �4� 0 − �t + �2

�t + �2 − 2ig
� , �16�

that is,

A12�x�,x��,t,t�� = A21�x�,x��,t�,t� =
1

2�

��t� − t�
�t� − t�

�exp�−
�x� − x���2

4�t� − t� � ,

A22�x�,x��,t,t�� = −
ig

�
ln�x� − x��� −

ig

2�
�

0

t−t� d�

���

�exp�−
�x� − x���2

4��� � . �17�

The complete generating functional is written, then, as

Z��Jq
p� = exp�� dtd2x��2g

�3

� ĵp
2�jp

− g
�4

� ĵp
2�jp

2��Z0��Jq
p� .

�18�

Applying time-independent spatial translations to the
�-model’s action, the holomorphic projected energy-
momentum tensor is readily computed as

T�w� = 4�i� dt�w�̂�w� . �19�

The time variable is extended here to −� t�. Note that
due to the assumption of statistical stationarity one does not
have to worry about boundary conditions at t→ �.

Since the renormalized g vanishes at small scales, the
exponential in Eq. �18� plays no role, and we expect the
energy-momentum correlator to be given, in the ultraviolet
region, by the free �quadratic� approximation,

�T1�w�T2�w��	 = − �4��2� dt� dt� � ���w�1�w,t��w�

��2�w�,t��	0��w�̂1�w,t��w��̂2�w�,t��	0

+ ��w�̂1�w,t��w��2�w�,t��	0��w�1�w,t�

��w��̂2�w�,t��	0� . �20�

The above two-point correlation functions are computed

from the functional derivatives of Z0��Jq
p� at vanishing cur-

rents. We obtain

��1�w,t��2�w�,t��	 =
1

8�2� d2k�
1

k2

�exp�− k2��t� + �t��� + ik� · �x� − x���� ,

��̂1�w,t��̂2�w�,t��	 = − ��− t���− t�� �
1

8�2� d2k�k2

�exp�− k2��t� + �t��� + ik� · �x� − x���� ,

��̂1�w,t��2�w�,t��	 = −
i��− t�

8�2 � d2k� exp�− k2��t� + �t���

+ ik� · �x� − x���� . �21�

Note that ��̂1�w , t��2�w� , t��	= ��̂2�w , t��1�w� , t��	. We are
led, in this way, after a straightforward but lengthy compu-
tation, to

�T1�w�T2�w��	 =
1

32��0



drrJ2�r��2 1

�w − w��4 =
1

8

1

�w − w��4 ,

�22�

where J2�r� is the second order Bessel function of the first
kind. It is remarkable that Eq. �22� does not depend on the
coupling constant g at all �for finite g�. Comparing Eqs. �6�
and �22�, we find out that in the EW regime of the KPZ
model, surface growing is conformal, with unit central
charge, in agreement with the numerical SLE results �6�.

At larger space-time scales, the EW regime breaks down,
as indicated by anomalous exponents in the Family-Vicsek
�FV� finite size scaling relation for the roughness, W

����h− h̄�2	=L�F�t /Lz� �19,28�. In two dimensions, EW ex-
ponents are exactly �=0 and z=2 �19�, while for the KPZ
model, ��0.38 and z�1.62 �29,30�.

Unfortunately, we are unable to access, by means of per-
turbation theory, the strong coupling �large scale� regime of
the surface growing model �9�. The numerical analysis of
Ref. �6�. points out that the KPZ universality class is confor-
mal as well, with vanishing central charge. It is a challenging
problem to derive it along the analytical formalism presented
here. It is worth mentioning that there are at least two non-
perturbative approaches that could be useful, in principle, to
address evaluations of the energy-momentum correlator in
the KPZ strong coupling regime: one is the “exact renormal-
ization group” technique �27�; the other is the 1 /N expansion
developed in �31�.

To summarize, we have discussed the issue of conformal
invariance in �2+1�-dimensional stochastic systems within a
systematic field-theoretical framework. A dimensionally re-
duced energy-momentum tensor is defined in two dimen-
sions from the original dynamical model, as a solution of
translation Ward identities. Our main working hypothesis is
that critical surfaces are not spoiled by the introduction of
replicated auxiliary fields, which avoid computational com-
plications associated with dimensional reduction. The ap-
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proach opens the way for analytical studies of conformality
in a broad class of out-of-equilibrium models. A performance
test has been carried out for the short-distance �weak-
coupling� regime of the KPZ model of surface growing,
where the method is noted to work with perfection.
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